If it's not what You are looking for type in the equation solver your own equation and let us solve it.
140^2+b^2=400^2
We move all terms to the left:
140^2+b^2-(400^2)=0
We add all the numbers together, and all the variables
b^2-140400=0
a = 1; b = 0; c = -140400;
Δ = b2-4ac
Δ = 02-4·1·(-140400)
Δ = 561600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{561600}=\sqrt{14400*39}=\sqrt{14400}*\sqrt{39}=120\sqrt{39}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120\sqrt{39}}{2*1}=\frac{0-120\sqrt{39}}{2} =-\frac{120\sqrt{39}}{2} =-60\sqrt{39} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120\sqrt{39}}{2*1}=\frac{0+120\sqrt{39}}{2} =\frac{120\sqrt{39}}{2} =60\sqrt{39} $
| 113+d=298 | | 5-3(2x-7)=2(3x) | | 5/4p=-1/10 | | 176=15(x-11) | | -1/10a=1/3 | | 3.2p-1.8=7.8 | | x-0.8= | | –7h=–9h−4 | | 8-4g=-8 | | v-37=184 | | 1.5y-0.42=0.3+0.18 | | p-63=109 | | 6.4(x+2)+4.4(3-x)=11 | | n+163=538 | | 9h=–10+10h | | n+163=375 | | y+4.3=10.8 | | 5x+4-2x=-(x+ | | 2y=2y-13 | | 6.4(x+2)+4.44(3-x)=11 | | 11x=195 | | 2-16y=6(3y+2) | | 5/10=4/n | | (3/4)x-4=8 | | 5(x+4)+2(x+2)=5-4x | | 240x4=1 | | 4=11c | | 4(h+1)=12+5 | | 810=x | | 12.50h+500=1,350 | | –4u+14=–3u–17 | | 250x3=5500 |